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Introduction and Background
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Figure 1

•Interference 
parameter 

• Inward radial 
flow-induced load 
qo

•Contact force 
Fres generated at 
interface of fiber 
tip and rotor

•Local oncoming 
flow of gas 
toward bristle 
pack qxFigure 1 Brush seal with various working loads
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Inter-bristle friction 
force model
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Figure 2 

(a) Depiction of partial 
brush seal with front 
and back plate that 
constrain bristle pack 

(b) Section A-A view, 
depicting the 
compactive load gc
around bristle pack. 
The interactive forces 
of three fibers (1, 2, 
3) are studied for
hysteresis 
phenomenon 
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Inter-bristle Friction 
Model (cont’d)

Figure 3

• Three un-deformed 
neighboring fibers 
subjected to the 
compactive load gc

• Deformation of 
fibers under 
compactive load gc. 
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Inter-bristle Friction 
Model (cont’d)

Figure 4

(a) Segment of the deformed 
fiber subjected to the 
uniform compactive load 
gc and traction force fA-A '
and fB '-B

(b) simplified model 
depicting interaction 
between neighboring 
bristles as uniformly 
distributed moment m* 
along deformed fiber
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Inter-bristle Friction 
Model---derivation of m*

dNdfdNdf BBAA μμ == −′′− ;

cdN ds g= ⋅ dsgdf

dsgdf

cBB

cAA

μ
μ

=
=

−′

′−

dsrgdm wcμ2=

Lrgm wcμ2=

wc rgm μ2* =
If Hexagaonal closed-pack, then )60cos21(2* += wcrgm μ

Refer to Fig.3 and Fig.4:

1. Differential frictional force dfA-A’ and dfB’-B

2. Differential moment dm:

3. Resisting bending moment m

4. Distributed bending moment per unit length m
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Governing Equation

According to Euler-Bernoulli Law:

*
resFm

EI M Mκ = +
d

ds

φκ =with 

Governing Equation:

2
*

2
cos( )res

d
EI m F

ds

φ α μ φ= − − −

Non-dimensional form of governing equation:

)cos(
22 ***
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Boundary conditions and 
constraint conditions

Boundary conditions:
1. slope constraint at the bristle origin, i.e. 

Φ=0 at s=0

2. Free of moment at the bristle tip, i.e.

dΦ/ds=0 at s=L

Constraint conditions:

;t tx x y yξ ξε ε− < − <

0 0

cos ; sin
L L

t tx ds y dsφ φ= =∫ ∫ θξθ

ξθθ

ξ
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Eccentricity of Shaft

Figure 5

Eccentric 
movement of 
rotor and 
displacement of 
bristle pack

N
A

SA
/C

P—
2005-213655/V

O
L1

217



Numerical Results and Discussion
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Relationship between

and

during loading and 
unloading Δ* for a 
transition seal with 
Rs/H*=8.9, θ=450 and 

=         =0.135. 

Δg/H* shows the position 
where fibers are “stuck”, 
i.e., cannot completely 
recover from bending 
during unloading Δ*
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Numerical Results and 
Discussion (Cont’d)
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Figure 7 (a) Relationship between dimensionless contact force and 
dimensionless penetration depth for     =0, 0.045, 0.090, 0.135. (Results 
shown are for Rs/H*=8.9, θ=45o; (b) relationship between Δg/H* and non-
dimensional bending moment 
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Numerical Results and 
Discussion (Cont’d)
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Figure 8 (a) Relationship between dimensionless contact force and 
dimensionless penetration depth for θ=15, 30 and 45 degrees. 
(Results shown are for a bristle with Rs/H*=8.9, Δ*

o=0,    =0.135) 
and (b) Relationship between Δg/H* and bristle lay angle θ
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Conclusions/Summary
The micro-moment can give rise to a delayed 
filament displacement as the shaft undergoes 
transient excursion and moves radially toward 
bristle pack (uploading). 
However, as the shaft returns back to its concentric 
position (downloading), the filament CANNOT 
completely recover from its deformed position and 
remains locked in an alternate configuration. 
Consequently, an annular gap is generated 
between the fiber tips and shaft surface, which 
promotes brush seal leakage and reduces turbo-
machinery performance.
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Conclusions/Summary 
(cont’d)

In general, for a given brush seal, the annular gap 
increases linearly as the micro moment m* is 
increased.

The brush seal having a shallowest lay angle (15o) 
results in the smallest annular gap, indicating that a 
brush seal design with shallow lay angle is least 
prone to hysteresis phenomenon, and can lead to 
improved performance.
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